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Unfolding

Unfolding (a.k.a. “inverse problem” or
“deconvolution”) is the procedure of
correcting for distortions due to limited
resolution of the measuring device!

Not unique to physics: all you need is a
distorting transmission medium!

Training: knowing the truth, you estimate
the distortion via simulation, and invert
the relationship to “correct for I1t”!

Goal: compare results between
experiments, make results human-
friendly (e.g. de-blurred pictures)

NB: unrelated to “molecule folding” in chemistry
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Bin-by-Bin Ratio

Data represented by histograms, i.e. physical quantities A

(“observables™) such as momentum or invariant mass are pooled # True Measured
iInto N bins within a given range e.qg. [0, 1500]! Distribution Distribution

Simple method: binNbyNbin ratio | |
Correction factors method

- ~~

Sources of distortion:! _—
i det,? A —1
: Ce f’l — = Ty = fz L'meas,i
$Backgrounds: entries due to a process mimicking that under Ltrue,i 5
consideration (noise) ! el

$Migrations: measured value di%rent from true!

$Efficiency, Acceptance: entries mistakenly discarded (false
negatives) or taken into account (false positives)!

: : _ Matrix inversion method
<z Use detector simulation (C++/FORTRAN) to estimate T

: : T - — RIIJ 1.Invert response matrix
. y
distortions by filling the elements of a Response Matrix R;. ! 2 Apply to data

E = R_ 1 d . 3.Get the truth-level histogram

-----

Matrix Inversion (MI) basically equivalent to least-squares
fitting



Matrix Inversion

When uncertainties are added, MI unfolding amplifies =~ I
the “noise” e.g. by introducing sharp peaks to y=Rx 1invert responge matrix %
compensate for the “smearing” of the true distribution 5 — R—14 3ot the trethlevel histogram

(“unregularized”)! R

Matrix mostly diagonal ~ small migrations ! 1100 %*/
+1 2 1 0 @

O%diagonal elements often poorly known (e.g. entries R=+0 1 3 1 C?

with large momentum measured with small momentum)! #8 8 é i ;

Solution: add a “smoothness” constraint e.g. Tikhonov

regularization (abs of second derivative) to favour

“flatter” solutions!

Need to recast problem in terms of a likelihood (cost) ~— -

function to be optimized Pi = Z [ Lj+1 — Lj-1]

j=2



Likelihood-based Unfolding

No Inherent matrix inversion, truth histogram found
by optimization (“likelihood” of being the correct

solution)!

Smoothness constraint introduces information from
the outside - solution more regular (reduced
variance) at the price of being biased!

Allows to calibrate sources of systematic error. #
Running time can be very large for O(Nbins) > 10 and
O(Nsyst) ~ 100 as in LHC experiments!

ldeally, a Quantum Annealer can speed up the
calculation - but cannot handle exp, factorial’

>> Some simplibcations are needed

Systematic Error Random Error




Unfolding as Quantum Annealing

L(y|d) = | | Poiss(yi,di) x || e 77,
: ; 2 2
() ’ y = ||Rz —d||” + X || Dz|
Poiss(y;, d;) y‘, —e
di' n—1
N .
Yi = ZR-z’.jiiJ Ti = QT ‘Bi 2:1 2" ]q-nxi+j-
j 4
N -1
pi = z Zj41 — Tj-1]
j=2

Poisson! Gaussian in large N limit, then take logL (NB: log(y) Is monotonic)!

Represent numbers in binary (digitization) with n bits !  encode x; 1=0...(N-1)
numbers with Nn qubits

&=oYset#
'=encoding



Unfolding as Quantum Annealing

® Response matrix, estimated from simulation, multiplies binary to get decimal

n—1
» Unfolded histogram (binary, encoded by qubits) z; = a; + 5; Z 2”_jqnxi+j, €, .
i=1 :
® Observed data per bin (decimal)
® Strength parameter to control importance of regularization %
: O
I O
l =
2 2 5
y = ||[Rz — d||” + A||Dz||
T | > Unfolded hlstogram (blnary’ encoded by quItS) > TP TP T PP TP T T TP T P TP PR PP PY T PY E
12 1 :
11 O
> D = no 1 I 2 1 g Laplacian operator!
H 1 | 2 1 Discrete second derivative
1 12

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO



https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/

Unfolding as Quantum Annealing

» Observed data per bin (decimal)

y = ||Rz — d||* + X\ ||Dz|’

! \

® Strength parameter to control importance of regularization

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO

» Response matrix, estimated from simulation, multiplies binary to get decimal

n—1

» Unfolded histogram (binary, encoded by qubits) z; = a; + 3; Z n—7 Qrixitij. e, E
1=1 '

Same object

Discrete second derivative

— :: 1 2 1 % Laplacian operator!
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Unfolding as Quantum Annealing

® Response matrix, estimated from simulation, multiplies binary to get decimal

n—1

» Unfolded histogram (binary, encoded by qubits) x; = a; + 5; Z Q=7 Qrixitj. s, :
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'

Same object

I » Unfolded histogram (binary, encoded by CIUbitS) B :
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11 O
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Unfolding as Quantum Annealing

» Observed data per bin (decimal)
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Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO
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® Response matrix, estimated from simulation, multiplies binary to get decimal

n—1

» Unfolded histogram (binary, encoded by qubits) z; = a; + 3; Z n—7 Qrixitij. e, E
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Toy Models

$ Real-life applications not possible, lack of public data / sw!

Entries

$ Created two “toy models” to capture the essence of
common measurements at the LHC:!

$ Peaking (e.g. mass)!

Mass

$ Steeply falling (e.g. momentum)!
$ Compare wrt “benchmark” method [D’Agostini 2010]! A

Entries

$ Toy model distortions (Rjj) perfectly known!

$ Closure test: truth-level histogram of data (di) and
simulation the same, check consistency!

>
Momentum

$ Uncertainty of QA unfolded histograms = 1 stdev from 20
executions with 5,000 reads from the QPU per run

12


https://arxiv.org/abs/1010.0632

Results / 1

-—=- True value 1200 -=-=-- True value
14 ¥ DOAgostini ItrBayes N =4) -~=-¥; #. ¥y DOAgostini ItrBayes (Njy =4)
QUBO (CPU, Neal) i QUBO (CPU, Neal)
15 . A ‘*_ o € QUBO (QPU, lower noise, ! =0) 1000 ! 4 0QUBO(QPU,! = 0)
l l ® QUBO (QPU, lower noise, ! =1) I ® QUBO(QPU,! = 0.1)
i ¢ i QUBO (QPU, regular noise, ! =0) O | QUBO (QPU, ! = 0.25)
101 4 + i i QUBO (QPU, regular noise, ! =1) 8007 i QUBO (QPU,! = 1)
= 4 | | O 5 i
1 Ay B g G 400 ; o
+ BLACK = TRUTH i e s
RED = BENCHMARK ; K 200 ;
2 OTHERS = QUBO B e 4 S e i
; T 00y @b
1 2 3 ; 5 1 2 3 4 5
Bin Bin
$ In a simple case, comparable with execution $Regularization promotes flatter solutions - known
on CPU (simulated annealing “neal ”) and to be problematic for steeply falling distributions!

with D’Agostin $Strength depends on the problem
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Unfolded

12
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Results / n-bits encoding

r————————————————————J

.
- ‘!\y |
r‘-::;: \

|

---- True value
® lower noise 4bits
® lower noise 8bits
® regular noise 4bits
regular noise 8bits

BLACK = TRUTH
RED = BENCHMARK
OTHERS = QUBO

Bin
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$8-bits vs of 4-bits encoding:!

$increased “granularity” of the
solution |

$ better numerical precision!

$longer chains of qubits, 7 (4-
bits) and 15 (8-bits) qubits!

$ Lower-noise: DW_2000Q 5!
$ Regular-noise: DW_2000Q 2 1



$Sources of systematic uncertainty shift the
value y; of each bin by a certain amount
(yi to be determined from best-fit!

$+1) variations s; estimated from simulation!
$Interpolation done during the optimization!

$Vector x (unfolded histogram) and matrix
Rij extended to include strength of
systematics zi in 1) units #
(e.g. +1) = sj, -0.5) = -0.5 5j)!

$Parameter * controls relative importance
of systematics in optimization
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Role of Systematic Uncertainties

Nsyst
y = Y; T Ayz — szxj =+ E ZkSik
k
T = (x1,..., TN | z1,..., 2K)
Ry Rin | s11 S1K
R = | (1)
R RnyN | 8N SNK

-----------------------------------------------------------------------

Unregularized! Tikhonov # Systematic!
Matrix Inversion Regularization Shifts

----------------------------------------------------------------------



Unfolded

12

10+

BLACK = TRUTH

RED = BENCHMARK v+. .....

OTHERS = QUBO

- True value

QUBO (CPU, Neal, ! =0)

QUBO (CPU, Neal, ! =1000)
QUBO (QPU, lower noise, ! =0)
QUBO (QPU, lower noise, ! =1000)

3 4
Bin

Syst 1

115 110 ' 05 00 05
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Results / Unfolding with Systematics

$ In a simple case with 1 systematic
the problem is not too much
degenerate and the strength is
recovered!

$ For very large strength (*=1000) the
solution di%ers between execution
on CPU and QPU!

$ Large gap largest-smallest QUBO
weights?!

$ Also tested Tabu heuristic, results
equivalent to execution with CPU



Conclusions

$ Unfolding (“deconvolution”) central to experimental science, other areas as well (e.qg.
sound de-noising, image sharpening)!

$ Presented an implementation of likelihood-based regularized unfolding!

$ Cost function derived from “full-fledged” with some approximations, math follows
naturally to define QUBO weights!

$ Performance on simple models comparable to “classical” methods!
$ Simple models = few bins, well-behaving migrations, short qubits chains!

$ Scaling up to realistic situations with >10 bins and ~100 systematics requires hybrid
approach (e.g. Tabu) or new-generation QPUs (e.g. Pegasus graph QPUs)

Peer-reviewed paper: JHEP 11(2019)128 !
Code repository: https://github.com/rdisipio/guantum unfolding
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Unfolding in Particle Physics

Simulate Interactions between particles
(e.g. Higgs boson production from
proton-proton collisions) based on
Standard Model calculations (“truth”)!

Simulate response of detector
(Introduces distortion due to limited
resolution, dead material, etc...)
(“reconstruction”)!

Train regressor to learn distortions!

Apply correction (=invert distortions) to
real data (“unfolded”)

Outgoing!
Particle 1
Detector
Proton beam 1 Proton beam 2
> <
Outgoing!
Particle 2
Theoretical Truth! As seen by the Detector!
(“Standard Model”) (simulation ~ real instrument)
Outgoing!
Particle 1
Outgoing!
Particle 2

Ak

Measured
['rue Distribution
Distribution
19



QUBO Weights

y = |Rz —d||* + X || Dz|’

Ax — Aija:j,
AB — Az’ijk,
ABT — Az]sz

>

1)y = (Rizj — di) (Rixzk — di) + A (Dijz; D)
= (RijRi + AD;jDix) zjzy — 2R;525d; + did,

n! 1
) Xi=li+" 20 i+j='it"ath

N
, | cab = 2WkBjaLb,
— With
* Y a§=1 Caa9aqa T+ E Cabqaqb | Caa = 2WinarBia +

a<b

>

WikBjiaBra — 2Rijd;iBja

20

y = Wirajor + 2W;ka; Braqa
+WikBiaBrbqads
—2R;jdic; — 2R;jdifBjaqa + did;.

(you can obtain the same result using PyQUBO)
(we also recommend using humpy.einsum)



https://pyqubo.readthedocs.io/en/latest/
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Source: “Experience with using unfolding procedures in ATLAS”, Silvia Biondi On Behalf of the ATLAS Collaboration, EPJ Web Conferences 137, 11002 (2017)
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Other applications in HEP

N 9 N
: : . . . Y g
$ QFT calculations (cross-sections): see Jordan, Lee, Preskill Science L Z Wiy Oy — m)y + = (Z l'm)

336:1130, (2012) and arXiv:1404.7115 (2014)!

$ Track-finding: Quantum Associative Memory (a la FTK) using DWave
hamiltonian to minimize quadratic unconstrained binary optimization (QUBO).
99.4% e+ cient with 60 tracks See https://sites.google.com/Ibl.gov/hep-qpr!

$ Background estimation: quantum Gaussian process, see arXiv:1803.10520!

$ Quantum Machine Learning: Hamiltonian minimization via tunnelling
Instead of back propagation (QNN); quantum support vector machines
(QSVM)!

$ H(! **) vs bkg, Nature 550, 375-379(0Oct 2017). DWave Ising hamiltonian
minimized, 36 input variables [J.R. VIimant, M. Spiropulu et al.]!

$ ttH( **) signal vs bkg. First attempt using IBM Qiskit with 45(feat)!
PCA! 20(gbits) [W. Guan et al.]!

$ Final State Radiation in Parton Shower [arXiv:1904.03196]!

$ Unfolding as quantum annealing [arXiv:1908.08519] (this work)!

$ Unfolding Quantum Computer Readout Noise [arXiv:1910.01969] (Qiskit)
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